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Sudbury Neutrino Observatory

1700 tonnes Inner
Shielding H2O

1000 tonnes D2O

5300 tonnes Outer 
Shield H2O

12 m Diameter 
Acrylic Vessel

Support Structure 
for 9500 PMTs, 
60% coverage

Urylon Liner and
Radon Seal
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Neutrino interactions in heavy water:
• Elastic Scattering: e- + νx → e- + νx

– Mostly sensitive to νe.
– Strong directional sensitivity.

• Charged Current: d + νe → p + p + e-

– Sensitive to νe only.
– Can measure νe energy spectrum.

• Neutral Current: d + νx → p + n + νx
– Equally sensitive to all three flavors.
– SNO is the only experiment that can 

measure this reaction.

• CC/NC ratio < 1 → definitive 
evidence of neutrino flavor change.

Elastic Scattering (ES)

Neutral Current (NC)

Charged Current (CC)

IntroWhy SNO is Unique?
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Elastic Scattering (ES)

Neutral Current (NC)

Charged Current (CC)

IntroWhy SNO is Unique?

Φcc
Φnc

νe
νe + νμ + ντ

=

Φday Φnightvs

Φcc
Φes

= νe
νe + 0.154(νμ + ντ)

Key physics signatures
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Spectrum
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Global analysis of solar neutrino and 
KamLAND data from 2004

SNO measurements of CC/NC, spectrum, 
and day-night asymmetry contribute to 

MSW constraints

Solar Neutrino Physics with 
SNO

Intro
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Phase II (salt)
July 01 - Sep. 03

Phase III (3He)
Nov. 04 - Dec. 06

Phase I (D2O)
Nov. 99 - May 01

SNO - 3 neutron detection methods

n captures on
2H(n, γ)3H

σ = 0.0005 b
Observe 6.25 MeV γ
PMT array readout

Good CC

40 proportional counters
3He(n, p)3H
σ = 5330 b

Observe p and 3H
PC independent readout

Event by Event Det.

2 t NaCl. n captures on
35Cl(n, γ)36Cl

σ = 44 b
Observe multiple γ’s
PMT array readout

Enhanced NC

36Cl

35Cl+n 
8.6 MeV

3H

2H+n 
6.25 MeV

Intro

n + 3He → p + 3H

p
3H

5 cm

n

3He
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SNO Measurement Phases Intro

1998 1999 2000 2001 2002 2003 2004 2005 2006

Comm.

D
2

O

D2O

PRL 87, 071301, 2001
PRL 89, 011301, 2002
PRL 89, 011302, 2002

306 days 

PRL 92, 181301, 2004 

Salt
(NaCl)

nucl-ex/0502021

391 days 3He Counters

>400 days 

Total of 1100-1200 live days
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Advantages of Salt

• Neutrons capturing on 35Cl 
provide higher neutron 
energy above threshold.

• Higher capture efficiency
• Gamma cascade changes the 

angular profile.

n

36Cl*
35Cl 36Cl

γ

Salt
Phase
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Neutron Capture Efficiency in SNO

35Cl(n,γ)36Cl 

Net Average 
Efficiency

39.9%

Te ≥ 5.5 MeV and 
Rγ ≤ 550 cm

2H(n,γ)3H 

Net Average 
Efficiency

14.4%

Te ≥ 5.0 MeV and 
Rγ ≤ 550 cm

Salt
Phase
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Cherenkov light and β14

θij

β14 = β1 + 4β4

Charged particle light cone

Legendre expansion of 
angular distribution

Salt
Phase



Keith Rielage on behalf of the SNO Collaboration             July 11, 2005                                  INFO ‘05

Extracted Events:
CC:  2176 ± 78
NC:  2010 ± 85
ES:  279 ± 26

External neutrons:  128 ± 42
Backgrounds fixed in fit:  128

391 Day Salt Results Salt
Phase
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Predicted LMA CC spectral 
distortion

Salt
Phase
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Elastic Scattering Spectrum Salt
Phase
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Energy-Unconstrained Fluxes Salt
Phase
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SNO flux results - Summary Salt
Phase
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ACC and ANC are correlated 
(ρ = -0.532)

In standard neutrino 
oscillations, ANC should be 

zero…

Day Night Asymmetries Salt
Phase

ACC= -0.056 ± 0.074 (stat.) ± 0.051 (syst.)

ANC= 0.042 ± 0.086(stat.) ± 0.067 (syst.)

AES= 0.146 ± 0.198(stat.) ± 0.032 (syst.)
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ACC= -0.037 ± 0.063(stat.) ±0.032(syst.)

AES= 0.153 ± 0.198(stat.) ±0.030(syst.)

Constraining ANC to be zero:

In the pure-D2O 
phase,

(shape constrained, 
ANC constrained)

013.0
012.0e 049.0070.0A +

−±=

⎟
⎠
⎞

⎜
⎝
⎛

+
−

≡
DN
DNA )(2

Combine with analogous ACC from 
the salt phase: 

Convert Super-Kamiokande AES to 
Ae, and combine with SNO:

040.0037.0A OD salt 2
±=+

027.0035.0A SK  SNO ±=+

Day Night Asymmetries Salt
Phase
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Previous global analysis of 
solar neutrino data

Global 
Solar, 

with new 
salt 

results

Global 
Solar + 

KamLAND
766 ton-
year data
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• Lower energy threshold for combined analysis 
of the full salt and D2O data sets

• Looking at hep
• NCD phase ....

What is next?
3He
Phase
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The SNO Neutral Current Detectors

• First two phases of SNO relied on statistical separation of 
NC, CC, and ES signals using energy, radial distribution, 
angle with respect to the sun, and isotropy (salt phase 
only).

• Third phase has separate system to detect neutrons from 
NC interactions, so no statistical separation necessary.

• NCD Phase - Nov. 2004 through end of 2006:
– Salt removed.
– Array of 3He proportional counters (Neutral Current Detectors) 

deployed into heavy water.
– Neutron capture on 3He in NCDs (σ = 5330 b): 

n + 3He → p + 3H + 764 keV

3He
Phase
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Benefits of the NCDs 3He
Phase

νx

nNCD

PMT

Physics Motivation

Event-by-event separation. 
Measure NC and CC in separate 
data streams. 

Different systematic 
uncertainties
than neutron capture on NaCl.

3He array removes neutrons from 
CC, calibrates remainder.  CC 
spectral shape.
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• Proportional counters detect 
neutrons via: n + 3He → p + 3H.

• Low radioactivity CVD nickel, 
5 cm diameter, 0.36 mm thick.

• Gas is 85% 3He and 15% CF4,  
at ~ 2.5 atm.

• Anchored to the bottom of SNO 
on a 1-meter square grid.

• 40 strings, each 9 to 11 meters 
long, 398 meters total length.

• 50 μm copper anode wire at 
1950 V. Anchor ball

ROV ball

Vectran

Delay lin

Quartz
insulator

Nickel endcap

NCD body
9 to 11 m long
3 or 4 sections

Pinch-off tube

Cable endcap
Resistive coupler

Laser weld

braid

e

Anode wire
1950 V

~ 9 -11 m
The SNO Neutral Current Detectors 3He

Phase
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~ 1200 n captures per year in NCDs from solar ν
n + 3He → p + 3H   (Q = 764 keV)

p

3H

191 keV

573 keV 764 keV

3H

p

NCD wall
anode wire

< 191 keV

End view of an NCD with 
representative ionization tracks.

Idealized energy spectrum in a 3He 
proportional counter.

p hits wall

3H hits wall

p-3H track fully 
contained in gas

Neutron Capture in the NCDs 3He
Phase
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Neutron Energy Spectrum

191-keV shoulder from 
proton going into the wall

764-keV peak• One deployed NCD string. 
• AmBe neutron source.
• Energy scale uncalibrated.

3He
Phase
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Deployment Constraints

• Desired NCD string length = 9 - 11 meters.
• Elevator size = 3 meters.
• Detector sections ≤ 3 meters long.
• Sections had to be electrically connected 

and welded together underground.
• Roof height = 5.5 meters.
• Many of the welds were done above the 

open detector, where cleanliness is most 
critical.

• No data taken during NCD deployment.

3He
Phase
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The Laser Welder

• Very clean laser welding 
process.

• 1024-nm pulsed Nd-YAG laser 
melted craters in the nickel, 
fusing two overlapping pieces 
together.

• Operated with horizontal tubes 
on a welding bench or with 
vertical tubes over the neck of 
the acrylic vessel.

• Prior to each weld, injected 4He 
into weld joint for leak testing.

3He
Phase
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The Remotely Operated Vehicle

• Welded NCD string lowered into 
the D2O with pulley system. 

• ROV in heavy water during NCD 
deployment:
– Two ballast tanks to control buoyancy 

and six joystick-controlled thrusters. 
– Umbilicals provide purge gas, electrical 

power, and video feed. 

• ROV pilot lifted the NCD off the 
pulley, flew it to its designated 
anchor point, and anchored it.

Ballast 
tanks

Anchor 
socket

ROV 
camera

Flotation 
collar

~ 2 feet

3He
Phase
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Correlation Coefficients

D2O 
unconstrained

D2O 
constrained

Salt 
unconstrained

3He

NC,CC -0.950 -0.520 -0.521 ~0

CC,ES -0.208 -0.162 -0.156 ~-0.2

ES,NC -0.297 -0.105 -0.064 ~0

3He
Phase

Recall
salt
analysis

Energy 
Spectra

Light 
Isotropy
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Estimated Sensitivity with NCDs

• Neutron capture efficiency: 
– D2O: 29% → 14% after analysis cuts.
– Salt: 87% → 40% after analysis cuts.
– NCD: 28% → 14% after analysis cuts (estimated).

• Statistical separation unnecessary - simply count neutrons.
• Increased supernova sensitivity due to CC/NC separation.

D2O Salt NCD (estimated)
NC Error 13% 8% 4%
CC Error 6% 6% 6%
Day/Night Error 5% 7% 4%

3He
Phase
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Precision ν measurements with SNO
3He
Phase

• Improved (~2x precision) 
SNO NC/CC measurement 
would yield an improved
θ12 value

• Similar improvement of 
SNO Day/Night asymmetry 
would help with Δm12

• Consistency tests

• In 3 ν mixing, also helps 
constrain θ13
(Maltoni et al. hep-ph/0309130)

Solar+KamLAND
de Holanda & Smirnov

hep-ph/0205241    hep-ph/0212270

SNO CC/NC
(7% uncertainty)

SNO Day/Night
(3% abs. uncertainty)
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What does the Future Hold? New

Directions

Gallium Chlorine SNO, SuperKUp to 2005
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What does the Future Hold? New

Directions

CLEAN, LENS, HERON
Borexino, SNO+

SuperKBeyond 2007?
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• precision survival probability measurement: pep, pp
• precision measurement of total solar neutrinos

– 91% from pp
• observe rise in survival probability at lower energies: lower 

energy 8B, 7Be, pep
• testing the vacuum-matter transition is sensitive to new physics
• Observe CNO neutrinos

Low Energy Solar Neutrinos New

Directions

from Bahcall & Peña-Garay (2004)

vacuum-matter transition
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 [MeV]νE
0 2 4 6 8 10 12 14 16 18 20

ee
P

0.2
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0.5

0.55

0.6

Sat Mar 19 17:13:48 2005

Solar Neutrino Survival Probability

pep ν

SNO CC/NC

Δm2 = 8.0 × 10−5 eV2

tan2θ = 0.45

Survival Probability Rise New

Directions

from M. Chen

SSM pep flux:
uncertainty ±1.5%
allows precision test

transition from matter to 
vacuum dominance…test the 
extrapolation of the “simplest 
neutrino oscillation model”
coupled with solar models

Sensitive to new physics:
• non-standard 
interactions
• mass-varying neutrinos
• CPT violation
• large θ13
• sterile neutrino admixture
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Non-Standard Interactions

Miranda, Tórtola, Valle (2005) Friedland, Lunardini, Peña-Garay (2004)

New

Directions

• Drastically different predictions from models for pep and 7Be
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Barger, Huber, & Marfatia (2005) Cirelli, Gonzalez-Garcia, Peña-Garay (2005)

Mass-Varying Neutrinos
New

Directions

• Again, different predictions for low energy solar neutrinos
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• Current discussions of what to do with SNO cavity once SNO 
ends in 2007 after returning the D2O

• Main proposal is to replace D2O with liquid scintillator
• Backgrounds are lower than KamLand due to depth

– Must improve purification of scintillator
– Must choose scintillator that will not harm acrylic

• Physics program:
– pep, CNO, 7Be, low 8B solar neutrinos
– Geo neutrinos
– 240 km baseline reactor oscillation confirmation
– Supernova neutrinos
– Double beta decay?

SNO+
New

Directions
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7Be solar neutrinos

using BP2000
and best-fit LMA

pep bump
CNO continuum

SNO+ Event Rates (Oscillated) New

Directions

3600 pep/year/kton >0.8 MeV
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CLEAN New

Directions

• Cryogenic Low 
Energy Astrophysics 
with Noble gases

• Scintillation in liquid 
neon

• Physics program
– pp, CNO solar neutrinos
– Supernova neutrinos
– Neutrino magnetic 

moment

• Needs large depth to 
shield backgrounds

130 ton version of CLEAN
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CLEAN Event Rates New

Directions

10 tons, 1 year
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New Directions Summary

• Direction seems to be in lower energy solar 
neutrinos with precision spectral measurements

• New and old technology approaches proposed
• Must go deep (SNOLab or DUSEL)
• Possible measurements in the next 10 years
• Vacuum-matter transition seems like area to test 

theories/new physics
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